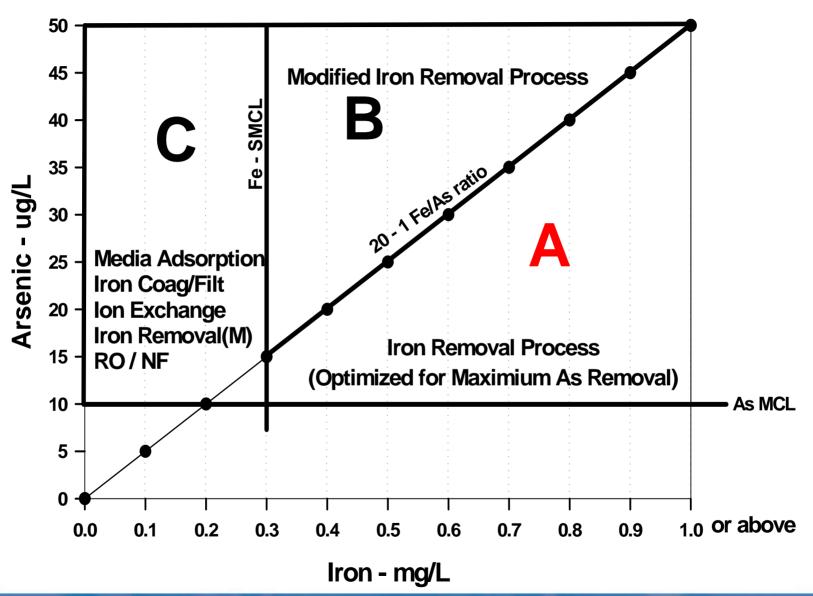

ABR: Types, Volumes, Geographical Distribution and Disposal

Tom Sorg
USEPA
Cincinnati, OH

Arsenic-Bearing Water Treatment Residuals
February 13-14, 2006
Rio Rico, AZ

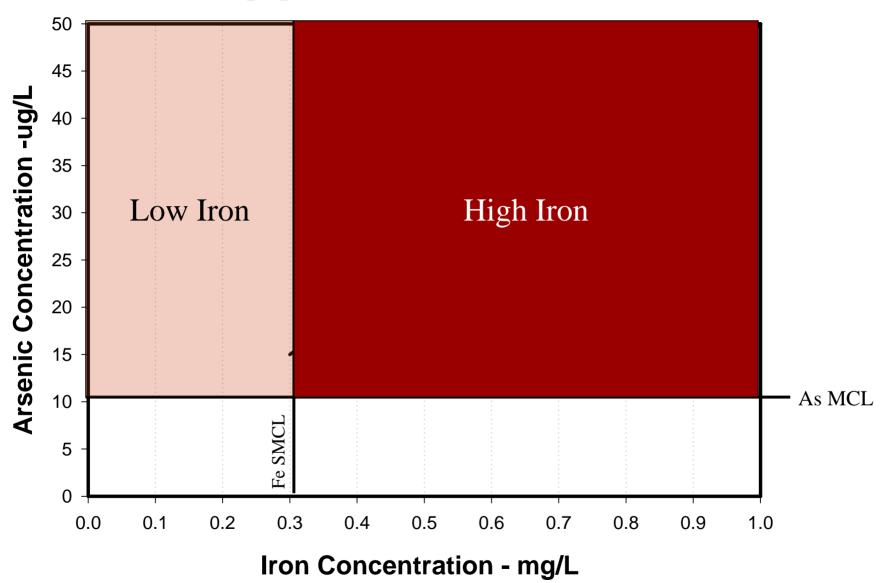
Arsenic Demonstration Sites Rd 1 & 2 – 40 sites in 21 States

- Adsorptive media [25]
 - Nine types of media
- Iron removal and coagulation
 & filtration [12]
 - Macrolite®, Electromedia I, and Aeralater®
- Anion exchange [2]
- Reverse osmosis (POU)[1]

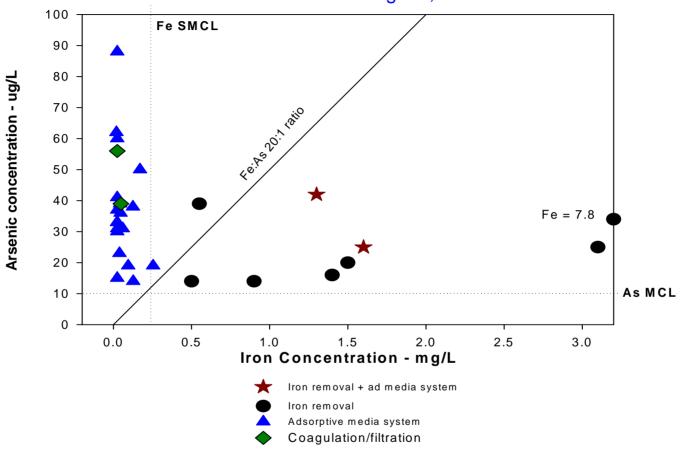


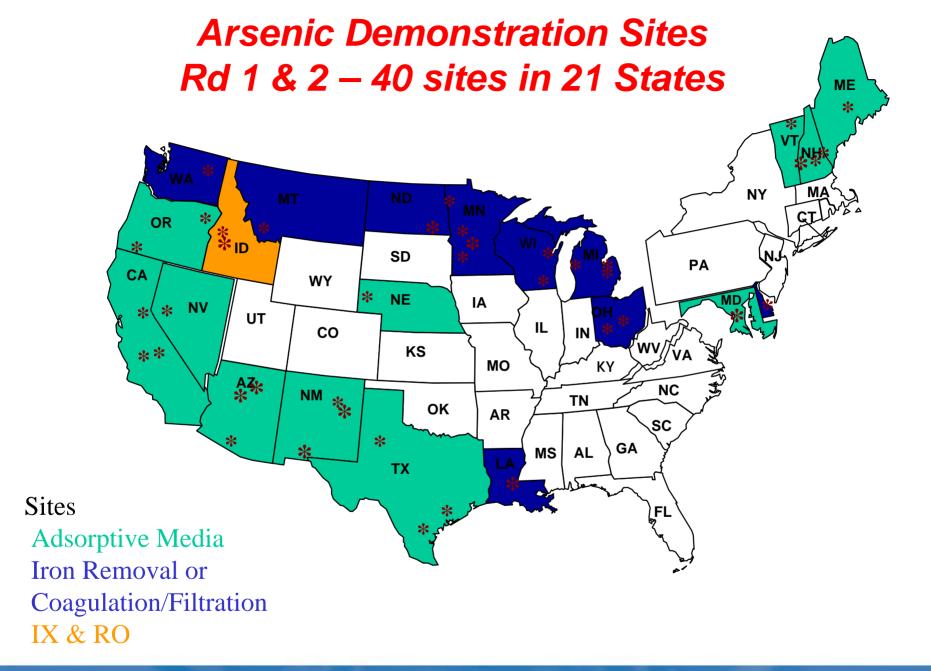
Arsenic Removal Technologies Rd 1 & Rd 2

Technologies	No. of S	ites Rd 1	No. of S	ites Rd 2	Total
Adsorption media	9	(8)	16	(11)	25
E 33 (2 /pretreatment)	6	(5)	8	(4)	14
GHF	1	(1)			1
ATS Complex 2000			3	(3)	3
MEI Zirconium			1	(1)	1
ArseneX ^{np}			1	(1)	1
ARM 200			2	(1)	2
AAFS 50	1	(1)			1
G2	1	(1)			1
Absorbsia (Dow)			1	(1)	1
Coagulation/filtration	1	(1)	4	(2)	5
Iron Removal			6	(2)	6
Ion Exchange	1	(1)	1	(0)	2
POU - RO			1	(1)	1
System Modification (C/F)	1	(1)			1



Arsenic Treatment – Simple Process Selection Guide


Application – Where?



Application – Where?

Arsenic Demonstration Technologies, Round 1 & 2 Sites

Adsorptive Media Rd 1 & Rd 2

	Media	System	
Media Type	Manufacturer	Vendor	No. of Sites
E33 (Fe-based)	Bayer	STS	5
		AdEdge	9
GFH (Fe-based)	USFilter	USFilter	1
ARM200 (Fe-based)	Englehard	Kinetico	2
AAFS 50 (Al-based)	Alcan	Kinetico	1
A/I C2000 (Al-based)	ATS	ATS	3
Adsorbsia (Ti-based)	Dow	Kinetico	1
Isolux-302M (Zr-based)	MEI	MEI	1
G2 (Si-based)	ADI	ADI	1
As:X ^{np} (resin-based)	Purolite	VEETech	1

Performance Evaluation Studies – Round 1 Adsorptive Media

Site	As (ug/L)	System	Design Flow rate	Months Operating*
Desert Sands, NM	23	AM – E33	320	24
Rollinsford, NH	36	AM – E33	100	19
Queens Ann's County, MD	19	AM – E33	300	19
Brown City, MI	14	AM – E33	640	20
Rimrock, AZ	50	AM – E33	45	19
Valley Vista, AZ	41	AM – AAFS 50	37	19
Bow, NH	39	AM – G2	35	14
South Truckee Meadows, Reno, NV	39	AM - GFH	350	3
Nambe Pueblo, NM	33	AM – E33	145	0

^{*} As of Dec. 31, 2005

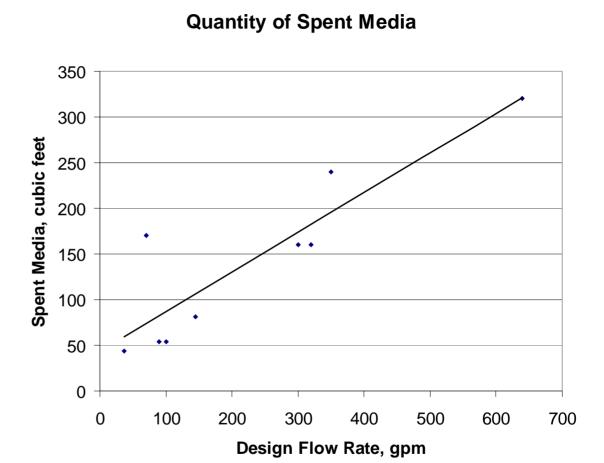
Treatment Residuals

- Adsorptive media
 - Spent media (Solids)
 - Backwash water (Liquid w/solids)
- Iron removal and coagulation & filtration
 - Backwash water (liquid w/solids)
- Anion exchange
 - Brine (Liquid)
- Reverse osmosis
 - Reject wastewater (Liquid)

Adsorption Media – Residual Disposal Options

- Media
 - Disposal to landfill [24]
 - Regeneration and reuse [1]

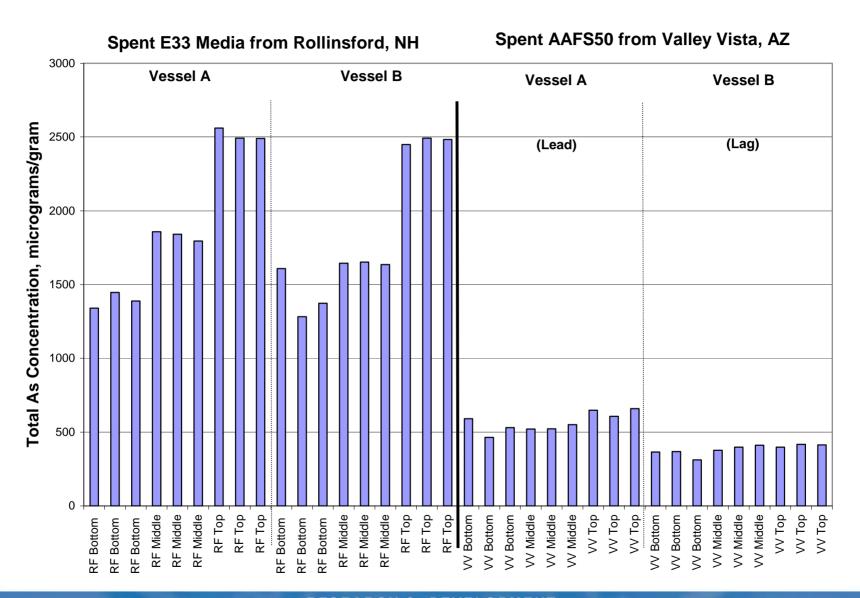
- Backwash Water
 - Sanitary sewer or septic system
 - Surface discharge [8]
 - Reclaim [2]
 - Not yet specified [5]



Quantity of Spent Adsorption Media

Most adsorption systems designed with 5 to 10 minutes of contact time Amount of media required proportional to flow rate

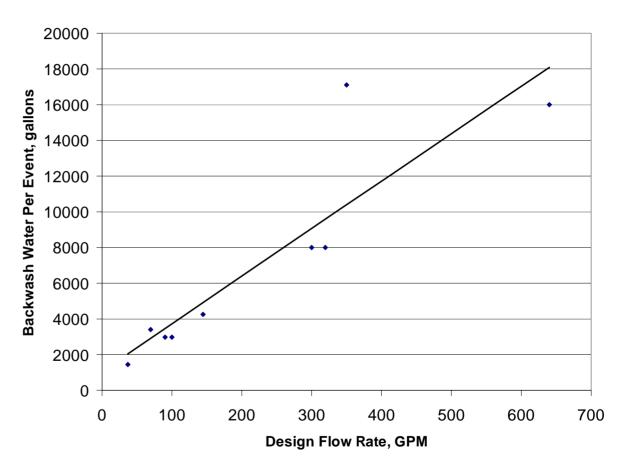
Round 1 Range 54 ft³ @ 100 GPM 320 ft³ @ 640 GPM


Characteristics of Spent Adsorption Media

Parameter	Units	Rollinsford, NH	Valley Vista, AZ
Media Type	NA	E33	AAFS50
Media Bed Life	BV	15,000 BV	16,860 BV ^(a)
Quantity	ft ³	54	16.7
TCLP As	mg/L	<0.05	<0.05
TCLP Ba	mg/L	0.95 to 0.96	1.4 to 1.6
TCLP Cd	mg/L	<0.05	<0.05
TCLP Cr	mg/L	<0.05	<0.05
TCLP Pb	mg/L	<0.1	<0.1
TCLP Hg	mg/L	<0.003	<0.003
TCLP Se	mg/L	<0.3	<0.3
TCLP Si	mg/L	<0.05	<0.05

Notes:(a) Before pH Adjustment was implemented

Characteristics of Spent Adsorption Media



Adsorption - Quantity of Backwash Water

- Typical frequency of backwashing is weekly to monthly
- Range of backwash loading rates
 - 4 to 12 gpm/ft2
- Some media loss may be experienced at high backwash rates

Quantity of Backwash Water

Adsorption - Characteristics of Backwash Water

Parameter	Units	AN	ВС	RF	RR	SV
Influent As	μg/L	22.7	14.2	36.2	50	18.8
Media Type	NA	E33	E33	E33	E33	E33
рН	S.U.	7.5 - 8.1	7.4 – 8.1	7.2 – 8.8	7.0 – 7.4	7.2 - 7.9
Turbidity	NTU	40 - 330	0.8 - 210	110 -1400	7.3 - 52	12 - 600
TDS	mg/L	706 - 886	392 -1030	278 - 734	306 - 564	100 - 430
As Soluble	μg/L	6.4 - 25.7	4.9 - 20	9.5 – 70.9	1.6 – 55.4	0.2 - 12.4
Fe Soluble	μ g /L	<25 - 176	<25 - 280	<25 - 113	<25	<25
Mn Soluble	μ g/L	2.1 - 13	9.5 – 19.5	3.7 - 118	<0.1 – 0.6	0.1 – 5.7

Notes:

Site 1 AN = Desert Sands MDWCA Anthony, NM

Site 2 BC = Brown City, MI

Site 3 RF = Rollinsford, NH

Site 4 RR = Rimrock, AZ

Site 5 SV = Queen Anne's County Stevensville, MD

Adsorption – Characteristics of Backwash Water (Continued)

Parameter	Units	ВО	VV
Influent As	μg/L	39.2	41
Media Type	NA	G2	AAFS50
рН	S.U.	6.2 - 6.9	6.8 - 7.7
Turbidity	NTU	34 - 390	2.6 - 890
TDS	mg/L	38 - 244	118 - 822
As Soluble	μ g /L	11.4 - 42.8	0.3 - 40.5
Fe Soluble	μ g /L	<25 - 66	<25
Mn Soluble	μ g /L	0.3 - 0.6	<0.1 - 1.0
Al Soluble	μ g /L	NA	<10 - 32.6

Notes:

Site 6 BO = Bow, NH

Site 7 VV = Valley Vista, AZ

C/F and Iron Removal Technologies

- CF/IR Macrolite® [9]
- CF/IR Electromedia [1]
- CF/IR Aeralater® [2*]
- CF/IR MnO2-coated anthrasand [1]
- IR Manganese Greensand [1**]


Notes:

*Includes Aeralater™ plus E33 treatment system for polishing step

**From USEPA Licking Valley High School Study

Climax, MN Iron Removal System

Treatment Residuals

- Adsorptive media
 - Spent media (Solids)
 - Backwash water (Liquid w/solids)
- Iron removal and coagulation & filtration
 - Backwash water (liquid w/solids)
- Anion exchange
 - Brine (Liquid)
- Reverse osmosis
 - Reject wastewater (Liquid)

CF/IR - Characteristics of Backwash Water

Parameter	Units	СМ	LW	LVHS
рН	S.U.	7.3 - 7.5	7.2 - 7.6	7.9 - 8.0
Turbidity	NTU	13.7 - 140	110 - 200	2.5 - 70
TDS	mg/L	646 - 940	928 - 1540	NA
As Soluble	μg/L	6.4 - 10.7	7.5 - 11.9	15 - 18
Fe Soluble	μg/L	25.7 - 148	<25	117 - 142
Mn Soluble	μg/L	68.1 - 86.7	0.8 - 46.6	108 - 421

Notes:

Site 1 CM = Climax, MN

Site 2 LW = Lidgerwood, ND

Site 3 LVHS = Licking Valley High School, OH

IR - Characteristics of Backwash Solids at LVHS

Tank ID	Tank C	Tank B	Tank C
Arsenic, TCLP (mg/L)	<0.5	<0.5	<0.5
Barium, TCLP (mg/L)	0.55	0.751	0.46
Cadium, TCLP (mg/L)	<0.05	<0.05	<0.05
Chrome, Total, TCLP (mg/L)	<0.05	<0.05	<0.05
Lead, TCLP (mg/L)	<0.1	<0.1	<0.1
Mercury, TCLP (mg/L)	<0.002	<0.002	<0.002
Selenium, TCLP (mg/L)	<0.1	<0.1	<0.1
Silver, TCLP (mg/L)	<0.05	<0.5	<0.05

Treatment Residuals

- Adsorptive media
 - Spent media (Solids)
 - Backwash water (Liquid w/solids)
- Iron removal and coagulation & filtration
 - Backwash water (liquid w/solids)
- Anion exchange
 - Brine (Liquid)
- Reverse osmosis
 - Reject wastewater (Liquid)

Ion Exchange – Fruitland, ID

- Kinetico IX-248-AS/N arsenic and nitrate removal system
 - Resin Type: Purolite A-520E strong base anion
 - Resin Volume: 50 ft3 in each of two vessels
 - Flow rate: 250 GPM
 - Brine discharged to sanitary sewer
- Influent Arsenic: 35 to 49 μg/L
 - Most of the arsenic present as As(V)
- Influent Nitrate: 9.4 to 11.2 mg/L
- Influent Sulfate: 52 to 75 mg/L

Conclusions

- Adsorption Systems
 - Spent media TCLP samples were non-hazardous
 - Both sanitary sewer and surface water discharge options used for BW water
 - Backwash frequency is typically weekly to monthly
 - Raw water often used for backwash with subsequent As removal observed during this step
- IR/CF Systems
 - Most discharges are to sanitary sewer due to volume/frequency of discharge
 - Similar volume per event compared to adsorption, but more frequent backwash at >3 times per week
- IX Systems
 - Quantity of wastewater can be reduced through reclaim and tracking of elution curve

Tom Sorg

513/569-7370

sorg.thomas@epa.gov